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I. ILLUSTRATIONS FOR LINEAR ICA OVER FINITE FIELDS

In this experiment we examine our ability to recover d independent ternary sources that were mixed by an unknown matrix
B. Let S ∈ {0, 1, 2}d be a d-dimensional ternary vector. Assume that the components of S are i.i.d. and follow a marginal
distribution P (Si) = [0.2, 0.3, 0.5]T . This means that the joint entropy of S is d ·1.485. We draw 10, 000 i.i.d. samples from S
and mix them with a binary matrix B. Then, we apply our binary ICA approach to recover the original samples and the mixing
matrix B. Figure 1 demonstrates the results we achieve for different number of components d. We compare our suggested
approach with three alternative methods: AMERICA, MEXICO and cobICA, as described in the main text.

We first notice that both GLICA and AMERICA successfully recover the mixing matrix B (up to permutation of the sources),
as they achieve an empirical sum of marginal entropies, which equals to the entropy of the samples prior to the mixture (blue
curve at the bottom). Second, we notice that our suggested lower bound is tight, as GLICA and AMERICA attain it. The green
curve corresponds to MEXICO, which demonstrates inferior performance. Finally, the red curve with the circles is cobICA,
which is less competitive as the dimension increases. It is important to emphasize that while AMERICA and MEXICO are
designed under the assumption that a perfect decomposition exists, cobICA and GLICA do not assume a specific generative
model. Nevertheless, GLICA shows to successfully recover the mixing matrix B.
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Fig. 1: Recovering independent sources experiment. The blue curve corresponds to GLICA and AMERICA, the green curve
is MEXICO while red curve with the circles is cobICA

II. ON THE FLEXIBILITY OF LINEAR TRANSFORMATIONS

A. Non-linear binary ICA

1) Worst-case Analysis:
Theorem 1: For any random vector X ∼ p, over an alphabet size m = 2d we have that

max
p

C(p, gopt) = Θ(d)

Proof We first notice that
∑d

j=1H(Yj) =
∑d

j=1 hb(P (Yj = 0)) ≤ d. In addition, H(X) ≥ 0. Therefore, we have that
C(p, gopt) is bounded from above by d. Let us also show that this bound is tight, in the sense that there exists a joint
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probability distribution p̃ such that C(p̃, gopt) is linear in d. Let p̃1 = p̃2 = · · · = p̃m−1 = 1
3(m−1) and p̃m = 2

3 . Then, p̃ is
ordered and satisfies P (Yi = 0) = m

6(m−1) .

In addition, we notice that assigning symbols in a decreasing order to p̃ results with an optimal permutation. This is simply
since P (Yj = 0) = m

6(m−1) is the minimal possible value of any P (Yj = 0) that can be achieved when summing any m
2

elements of p̃i. Further we have that,

C(p̃, gopt) =

d∑
j=1

H(Yj)−H(X) =

d∑
j=1

hb(P (Yj = 0))−H(X) = (1)

log(m) · hb
(

m

6(m− 1)

)
+
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+
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3
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3

)
=

log(m) · hb
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m

6(m− 1)

)
− 1

3
log(m− 1) +

1

3
log

1

3
+

2

3
log

2

3
−→
m→∞

log(m) ·
(
hb

(
1

6

)
− 1

3

)
− hb

(
1

3

)
.

Therefore, maxp C(p, gopt) = Θ(log(m)) = Θ(d). �

2) Average-case analysis: In this section we show that the expected value of C(p, gopt) is bounded by a small constant,
when averaging uniformly over all possible p over an alphabet size m.

To prove this, we recall that C(p, gopt) ≤ C(p, gord) for any given probability distribution p. Therefore, we would like to find
the expectation of C(p, gord) where the random variables are p1, . . . , pm, taking values over a uniform simplex.

Proposition 1: Let X ∼ p be a random vector of an alphabet size m and a joint probability distribution p. The expected
joint entropy of X , where the expectation is over a uniform simplex of joint probability distributions p is

Ep {H(X)} =
1

loge 2
(ψ(m+ 1)− ψ(2))

where ψ is the digamma function. �

Proof We first notice that a uniform distribution over a simplex of a size m is equivalent to a Direchlet distribution with
parameters αi = 1, i = 1, . . . ,m. The Direchlet distribution can be generated through normalized independent random variables
from a Gamma distribution. This means that for statistically independent Zi ∼ Γ(ki = 1, θi = 1), i = 1, . . . ,m we have that

1∑m
k=1 Zk

(Z1, . . . Zm) ∼ Dir (α1 = 1, . . . , αm = 1) . (2)

We are interested in the expected joint entropy of draws from (2),

Ep {H(X)} =−
m∑
i=1

E
{

Zi∑m
k=1 Zk

log
Zi∑m

k=1 Zk

}
= (3)

−mE
{

Zi∑m
k=1 Zk

log
Zi∑m

k=1 Zk

}
It can be shown that for two independent Gamma distributed random variables X1 ∼ Γ(α1, θ) and X2 ∼ Γ(α2, θ), the
ratio X1

X1+X2
follows a Beta distribution with parameters (α1, α2). Let us denote Z̃i ,

Zi∑m
k=1 Zk

= Zi

Zi+
∑

k 6=i Zk
. Notice that

Zi ∼ Γ(1, 1) and
∑

k 6=i Zi ∼ Γ(m− 1, 1) are mutually independent. Therefore,

fZ̃i
(z) = Beta(1,m− 1) =

(1− z)(m−2)

B(1,m− 1)
. (4)

This means that

E
{

Zi∑m
k=1 Zk

log
Zi∑m

k=1 Zk

}
= E

{
Z̃i log Z̃i

}
= (5)

1

B(1,m− 1)

∫ 1

0

z log (z)(1− z)(m−2)dz =

B(2,m− 1)

B(1,m− 1)

1

loge (2)

1

B(2,m− 1)

∫ 1

0

loge (z)z(1− z)(m−2)dz =

1

m loge (2)
E (loge (U))
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where U follows a Beta distribution with parameters (2,m− 1). The expected natural logarithm of a Beta distributed random
variable, V ∼ Beta(α1, α2), follows E (loge (V )) = ψ(α1) − ψ(α1 + α2) where ψ is the digamma function. Putting this
together with (3) and (5) we attain

Ep {H(X)} = −mE
{

Zi∑m
k=1 Zk

log
Zi∑m

k=1 Zk

}
=

1

loge (2)
(ψ(m+ 1)− ψ(2)) (6)

�

We now turn to examine the expected sum of the marginal entropies,
∑d

j=1H(Yj) under the order permutation. As described
above, the order permutation suggests sorting the probability distribution p1, . . . , pm in an ascending order, followed by mapping
of the ith symbol (in a binary representation) the ith smallest probability. Let us denote p(1) ≤ · · · ≤ p(m) the ascending
ordered probabilities p1, . . . , pm. [1] show that the expected value of p(i) is

E
{
p(i)
}

=
1

m

m∑
k=m+1−i

1

k
=

1

m
(Km −Km−i) (7)

where Km =
∑m

k=1
1
k is the Harmonic number. Denote the ascending ordered binary representation of all possible symbols

in a matrix form A ∈ {0, 1}(m×d). This means that entry Aij corresponds to the jth bit in the ith symbol, when the symbols
are given in an ascending order. Therefore, the expected sum of the marginal entropies of Y , when the expectation is over a
uniform simplex of joint probability distributions p, follows

Ep


d∑

j=1

H(Yj)

 ≤(a)
d∑

j=1

hb(Ep{Yj}) =
(b)

d∑
j=1

hb

(
1

m

m∑
i=1

Aij (Km −Km−i)

)
=
(c)

(8)

d∑
j=1

hb

(
1

2
Km −

1

m

m∑
i=1

AijKm−i

)
where (a) follows from Jensen’s inequality, (b) follows from (7) and (c) follows since

∑m
i=1Aij = 1

2 for all j = 1, . . . , d.

We now turn to derive asymptotic bounds of the expected difference between the sum of Y ’s marginal entropies and the joint
entropy of X .

Theorem 2: Let X ∼ p be a random vector of an alphabet size m and joint probability distribution p. Let Y = gord(X) be
the order permutation. For d ≥ 10, the expected value of C(p, gord), over a uniform simplex of joint probability distributions
p, satisfies

EpC(p, gord) = Ep


d∑

j=1

H(Yj)−H(X)

 < 0.0162 +O

(
1

m

)
Proof Let us first derive the expected marginal entropy of the least significant bit, j = 1, according to (8).

Ep {H(Y1)} ≤hb

1

2
Km −

1

m

m/2∑
i=1

Km−i

 = (9)

hb

1

2
Km −

1

m

m−1∑
i=1

Ki −
m
2 −1∑
i=1

Ki

 =
(a)

hb

(
1

2
Km −

1

m

(
mKm −m−

m

2
Km

2
+
m

2

))
=

hb

(
1

2

(
Km

2
−Km + 1

))
<
(b)

hb

(
1

2
loge

(
1

2

)
+

1

2
+O

(
1

m

))
≤
(c)

hb

(
1

2
loge

(
1

2

)
+

1

2

)
+O

(
1

m

)
h′b

(
1

2
loge

(
1

2

)
+

1

2

)
=

hb

(
1

2
loge

(
1

2

)
+

1

2

)
+O

(
1

m

)
where (a) and (b) follow the harmonic number properties: (a)

1)
∑m

i=1Ki = (m+ 1)Km+1 − (m+ 1)
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2) 1
2(m+1) < Km − loge(m)− γ < 1

2m , where γ is the Euler-Mascheroni constant [2]
and (c) results from the concavity of the binary entropy.
Repeating the same derivation for different values of j, we attain

Ep {H(Yj)} ≤hb

1

2
Km −

1

m

2j−1∑
l=1

(−1)l+1

l m

2j∑
i=1

Km−i

 = (10)

hb

1

2
Km −

1

m

2j∑
l=1

(−1)l
l m

2j
−1∑

i=1

Ki

 =

hb

1

2
Km −

1

m

2j∑
l=1

(−1)l
(
l
m

2j
Kl m

2j
− lm

2j

) <

hb

2j−1∑
i=1

(−1)i+1 i

2j
loge

(
i

2j

)
+

1

2

+O

(
1

m

)
∀j = 1, . . . , d.

We may now evaluate the sum of expected marginal entropies of Y . For simplicity of derivation let us obtain Ep {H(Yj)} for
j = 1, . . . , 10 according to (10) and upper bound Ep {H(Yj)} for j > 10 with hb

(
1
2

)
= 1. This means that for d ≥ 10 we

have

Ep


d∑

j=1

H(Yj)

 <

10∑
j=1

Ep (H {Yj}) +

d∑
j=11

hb

(
1

2

)
< (11)

9.4063 + (d− 10) +O

(
1

m

)
.

The expected joint entropy may also be expressed in a more compact manner. In Proposition 1 it is shown than Ep {H(X)} =
1

loge 2 (ψ(m+ 1)− ψ(2)). Following the inequality in [2], the Digamma function, ψ(m + 1), is bounded from below by
ψ(m+ 1) = Hm − γ > loge(m) + 1

2(m+1) . Therefore, we conclude that for d ≥ 10 we have that

Ep


d∑

j=1

H(Yj)−H(X)

 <9.4063 + (d− 10)− log (m)+ (12)

ψ(2)

loge 2
+O

(
1

m

)
= 0.0162 +O

(
1

m

)
�

In addition, we would like to evaluate the expected difference between the sum of marginal entropies and the joint entropy of
X , that is, without applying any permutation. This shall serve us as a reference to the upper bound we achieve in Theorem 2.

Theorem 3: Let X ∼ p be a random vector of an alphabet size m and joint probability distribution p. The expected difference
between the sum of marginal entropies and the joint entropy of X , when the expectation is taken over a uniform simplex of
joint probability distributions p, satisfies

Ep


d∑

j=1

H(Xj)−H(X)

 <
ψ(2)

loge 2
= 0.6099

Proof We first notice that P (Xj = 1) equals the sum of one half of the probabilities pi, i = 1, . . . ,m for every j = 1 . . . d.
Assume pi’s are randomly (and uniformly) assigned to each of the m symbols. Then, E{P (Xj = 1)} = 1

2 for every j = 1 . . . d.
Hence,

Ep


d∑

j=1

H(Xj)−H(X)

 =

d∑
j=1

Ep {Hb(Xj)} − Ep{H(X)} <

d− log (m) +
1

loge 2

(
ψ(2)− 1

2(m+ 1)

)
<

ψ(2)

loge 2

�
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To conclude, we show that for a random vector X over an alphabet size m, we have

EpC(p, gopt) ≤ EpC(p, gbst) ≤ EpC(p, gord) < 0.0162 +O

(
1

m

)
for d ≥ 10, where the expectation is over a uniform simplex of joint probability distributions p. This means that when the
alphabet size is large enough, even the simple order permutation achieves, on the average, a sum of marginal entropies which
is only 0.0162 bits greater than the joint entropy, when all possible probability distributions p are equally likely to appear.
Moreover, we show that the simple order permutation reduced the expected difference between the sum of the marginal entropies
and the joint entropy of X by more than half a bit, for sufficiently large m.
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